81 research outputs found

    Mass of the B_c Meson in Three-Flavor Lattice QCD

    Get PDF
    We use lattice QCD to predict the mass of the BcB_c meson. We use the MILC Collaboration's ensembles of lattice gauge fields, which have a quark sea with two flavors much lighter than a third. Our final result is mBc=6304±12−0+18MeVm_{B_c}=6304\pm12^{+18}_{- 0} MeV. The first error bar is a sum in quadrature of statistical and systematic uncertainties, and the second is an estimate of heavy-quark discretization effects.Comment: 4 pages, 3 figures; shorten to fit in PRL; published versio

    Predictions from Lattice QCD

    Get PDF
    In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q2q^2 dependence of the form factor in semileptonic D→KlνD\to Kl\nu decay, the decay constant of the DD meson, and the mass of the BcB_c meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.Comment: v1: talk given at the International Conference on QCD and Hadronic Physics, Beijing, June 16-20, 2005; v2: poster presented at the XXIIIrd International Symposium on Lattice Field Theory, Dublin, July 25-3

    Strong-isospin-breaking correction to the muon anomalous magnetic moment from lattice QCD at the physical point

    Get PDF
    All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to-date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to aμHVPa_\mu^{\rm HVP} for the first time with physical values of mum_u and mdm_d and dynamical uu, dd, ss, and cc quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δaμHVP,mu≠md\delta a_\mu^{{\rm HVP,} m_u \neq m_d}= +1.5(4)\%, in agreement with estimates from phenomenology and a recent lattice-QCD calculation with unphysically heavy pions

    B-> D* zero-recoil formfactor and the heavy quark expansion in QCD: a systematic study

    Full text link
    We present a QCD analysis of heavy quark mesons focussing on the B -> D* formfactor at zero recoil, F_D*(1). An advanced treatment of the perturbative corrections in the Wilsonian approach is presented. We estimate the higher-order power corrections to the OPE sum rule and describe a refined analysis of the nonresonant continuum contribution. In the framework of a model-independent approach, we show that the inelastic contribution in the phenomenological part of the OPE is related to the mQ-dependence of the hyperfine splitting and conclude that the former is large, lowering the prediction for F_D*(1) down to about 0.86. This likewise implies an enhanced yield of radial and D-wave charm excitations in semileptonic B decays and alleviates the problem with the inclusive yield of the wide excited states. We also apply the approach to the expectation values of dimension 7 and 8 local operators and to a few other issues in the heavy quark expansion.Comment: 70 pages, 13 figure

    A scanning electron microscopic study of hypercementosis

    Get PDF
    The purpose of this study was to evaluate morphological characteristics of teeth with hypercementosis that are relevant to endodontic practice. Twenty-eight extracted teeth with hypercementosis had their root apexes analyzed by scanning electron microscopy (SEM). The teeth were divided according to tooth groups and type of hypercementosis. The following aspects were examined under SEM: the contour and regularity of the root surface; presence of resorption; presence and number of apical foramina, and the diameter of the main foramen. The progression of club shape hypercementosis was directly associated with the presence of foramina and apical foramen obstruction. Cases of focal hypercementosis presented foramina on the surface, even when sidelong located in the root. Circular cementum hyperplasia form was present in 2 out of 3 residual roots, which was the highest proportion among the tooth types. The detection of a large number of foramina in the apical third of teeth with hypercementosis or even the possible existence of apical foramen obliteration contributes to understand the difficulties faced during endodontic treatment of these cases

    Topological Lattice Actions

    Full text link
    We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility \chi_t = \l/V is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.Comment: 38 pages, 12 figure

    Night Shift: Expansion of Temporal Niche Use Following Reductions in Predator Density

    Get PDF
    Predation shapes many fundamental aspects of ecology. Uncertainty remains, however, about whether predators can influence patterns of temporal niche construction at ecologically relevant timescales. Partitioning of time is an important mechanism by which prey avoid interactions with predators. However, the traits that control a prey organism's capacity to operate during a particular portion of the diel cycle are diverse and complex. Thus, diel prey niches are often assumed to be relatively unlikely to respond to changes in predation risk at short timescales. Here we present evidence to the contrary. We report results that suggest that the anthropogenic depletion of daytime active predators (species that are either diurnal or cathemeral) in a coral reef ecosystem is associated with rapid temporal niche expansions in a multi-species assemblage of nocturnal prey fishes. Diurnal comparisons of nocturnal prey fish abundance in predator rich and predator depleted reefs at two atolls revealed that nocturnal fish were approximately six (biomass) and eight (density) times more common during the day on predator depleted reefs. Amongst these, the prey species that likely were the most specialized for nocturnal living, and thus the most vulnerable to predation (i.e. those with greatest eye size to body length ratio), showed the strongest diurnal increases at sites where daytime active predators were rare. While we were unable to determine whether these observed increases in diurnal abundance by nocturnal prey were the result of a numerical or behavioral response, either effect could be ecologically significant. These results raise the possibility that predation may play an important role in regulating the partitioning of time by prey and that anthropogenic depletions of predators may be capable of causing rapid changes to key properties of temporal community architecture

    Heavy Quark Spectroscopy and Matrix Elements: A Lattice Study using the Static Approximation

    Get PDF
    We present results of a lattice analysis of the BB parameter, BBB_B, the decay constant fBf_B, and several mass splittings using the static approximation. Results were obtained for 60 quenched gauge configurations computed at β=6.2\beta=6.2 on a lattice size of 243×4824^3\times48. Light quark propagators were calculated using the O(a)O(a)-improved Sheikholeslami-Wohlert action. We find \Bbstat(m_b) = 0.69\er{3}{4} {\rm(stat)}\er{2}{1} {\rm(syst)}, corresponding to \Bbstat = 1.02\er{5}{6}\er{3}{2}, and \fbstat = 266\err{18}{20}\err{28}{27} \mev, f_{B_s}^2 B_{B_s}/f_B^2 B_B = 1.34\er{9}{8}\er{5}{3}, where a variational fitting technique was used to extract \fbstat. For the mass splittings we obtain M_{B_s}-M_{B_d} = 87\err{15}{12}\err{6}{12} \mev, M_{\Lambda_b}-M_{B_d} = 420\errr{100}{90}\err{30}{30} \mev and M_{B^*}^2-M_B^2 = 0.281\err{15}{16}\err{40}{37} \gev^2. We compare different smearing techniques intended to improve the signal/noise ratio. From a detailed assessment of systematic effects we conclude that the main systematic uncertainties are associated with the renormalisation constants relating a lattice matrix element to its continuum counterpart. The dependence of our findings on lattice artefacts is to be investigated in the future.Comment: 40 pages, uuencoded compressed tar file, containing one LaTeX file and 14 postscript files (to be included with epsf). Minor change in the value of the B parameter. Contains corrected value for the B*-B mass splitting. Version accepted for publication in Phys. Rev.

    Seiberg-Witten and "Polyakov-like" magnetic bion confinements are continuously connected

    Get PDF
    We study four-dimensional N=2 supersymmetric pure-gauge (Seiberg-Witten) theory and its N=1 mass perturbation by using compactification S**1 x R**3. It is well known that on R**4 (or at large S**1) the perturbed theory realizes confinement through monopole or dyon condensation. At small S**1, we demonstrate that confinement is induced by a generalization of Polyakov's three-dimensional instanton mechanism to a locally four-dimensional theory - the magnetic bion mechanism - which also applies to a large class of nonsupersymmetric theories. Using a large- vs. small-L Poisson duality, we show that the two mechanisms of confinement, previously thought to be distinct, are in fact continuously connected.Comment: 49 pages, 5 figure
    • …
    corecore